Электрохимическая коррозия металлов примеры

Электрохимическая коррозия металлов. Что это такое, точно знают далеко не все, хотя печальные последствия её проявления, встречаются в нашей обыденной жизни, практически на каждом шагу.

Мы привычно называем её ржавчиной, не особенно вникая в суть процесса. Теоретические формулировки, объясняющие механизм возникновения и действия электрохимической коррозии, по причине невидимости протекающих процессов, остаются за гранью нашего восприятия реальности.

Конечно, к этому явлению (и не только), можно относится и так, воспринимая корродирование (разрушение металла), как неизбежность, но можно поступить и по-другому, понять суть происходящего и если не изменить то хотя бы предсказать конечный результат.

Rzhavoe-zhelezo

Почему железо ржавеет

Всем известно, что металл (железо и не только) во влажной среде ржавеет т. е. слой за слоем разрушается, постепенно истончается и в конечном итоге превращается в бесполезный продут окисления, буренький порошок Fe2O3.

Покажу это на примере стали. В её составе есть кристаллиты феррита (железа) и цементита (карбида железа). Потенциал феррита меньше потенциала кристаллитов цементита, поэтому в этой связке железо будет анодом, а карбид железа катодом. Образующиеся в результате электрохимической коррозии ионы соединяются в нерастворимый гидроксид Fe(OH)2, который при высыхании становится обыкновенной ржавчиной.

Электрохимическая коррозия металлов что это такое

Выражаясь околонаучным языком, речь идёт об окислительно-восстановительном процессе, при котором на поверхности металла самопроизвольно, за счёт разности потенциалов образуется участки, точки гальванических пар, в которых положительно заряженные участки, аноды отдают свои электроны катодам, отрицательно заряженным участкам, на которых происходит обратный процесс, восстановление.

Это, общее описание механизма возникновения и протекания электрохимической коррозии, на самом деле, в зависимости от окружающих условий, процесс корродирования в каждом конкретном случае имеет свои особенности. Приведу типичные примеры.

Коррозия при неравномерной аэрации поверхности металла

Если на углеродистый сплав железа нанести каплю обыкновенной питьевой воды то через некоторое время по краям капли явственно проступит видимый кружочек ржавчины, а металл который находится под каплей останется чистым, но пройдёт ещё какое-то время и на том металле, который под каплей, станут видны небольшие язвочки.

Kaplya-vody-na-zheleze

Исходя из этих наблюдений можно сделать вывод, что катодный участок восстановления находится на периферии капли, потому что в этом месте более доступен приток воздуха (кислорода), а анод расположен в центре капли, где кислорода меньше.

Как ржавеет забитый в стену гвоздь

Gvozd'-v-doske

Именно поэтому забитый в стену гвоздь под воздействием коррозии истончится прежде всего в стене, там, где доступ воздуха затруднён, но и это утверждение не совсем верно. Вначале разрушается тот участок металла, который находится как бы в пограничном состоянии, уже не на поверхности, но и не слишком глубоко в стене.

Объясняется это тем, что в первую очередь мигрируют электроны расположенные в непосредственной близости от катода. До кристаллов металла, находящегося глубоко в стене просто не успевает дойти очередь.

Коррозия при непосредственном контакте различных металлов

EHlektrohimicheskaya-korroziya-metallov

Если две пластины из различных металлов наложить друг на друга и достаточно плотно прижать, а для ускорения процесса поместить их во влажную среду то спустя некоторое время, можно заметить, что одна из пластин начала корродировать, т. е. она оказалась анодом и начала разрушаться.

Какая именно из пластин окажется анодом, зависит от потенциала металла. Например, в паре медь железо, анодом окажется железо, потому что потенциал железа (–0,44) меньше потенциала меди (+0,34).

Кстати, невольно спровоцировать возникновение коррозии можно наложив пластину на пластину, даже из одного и то же металла. Правда, в это случае, будут задейственными совсем другие процессы. В зависимости от конкретных обстоятельств, это может быть, щелевая или межкристаллитная коррозия, но результат (разрушение) будет тот же.

Коррозия под воздействием блуждающих токов

Вот пример такой коррозии, яркий и с точки зрения электрика, даже отчасти драматический, функционирование системы заземления по системе ТТ. Хотя в этом случае преднамеренно создаются благоприятные условия для стекания заряда на землю, по сути, это ничего не меняет. Место ввода всегда катод, место выхода, анод т. е. этот тот участок металла, который разрушается наиболее интенсивно.

Судите сами, 1 А ежедневно стекающего тока за год съедает около 10% массы конструкции заземления контактирующей с землёй.

У коррозии под воздействием блуждающих токов есть одна отличительная черта, которая выделяет её из всех коррозионных процессов. Объёмность и интенсивность разрушения. Процессы протекают настолько масштабно и бурно, что для устранения их последствий понадобится немало времени и материальных вложений.

Влияние воды на образование ржавчины

Хотя атомы молекулы воды и не участвуют в ионном обмене отдельных участков металла, но её присутствие в том или ином виде, является обязательным условием для возникновения электрохимической коррозии. Ведь даже химически чистая вода, пусть слабый, но электролит, среда, проводящая электрический ток.

При какой относительной влажности воздуха начинается процесс коррозии

Критичной считается относительная влажность воздуха от 75%, но это вовсе не значит что при меньшей влажности протекание корродирования невозможно, а только то, что при такой влажности воздуха толщина жидкостной пленки на металле достигает оптимального размера для возникновения и протекания электрохимической коррозии.

Понравилась статья? Поделиться с друзьями:
MasterKvartira